Eu-SPRI Annual Conference 14 - 16 June 2023

Foresight Competence and Responsible Innovation in Industry: interrelations and policy implications

Łukasz Nazarko

l.nazarko@pb.edu.pl

Bialystok University of Technology (PL)

Rafael Popper

rafael.popper@manchester.ac.uk

University of Manchester (UK)

University of Turku (FI)

Futures Diamond (UK)

Technology Partners (PL)

Research info

Related Projects:

- Future-Oriented Technology Assessment as an instrument supporting Responsible Research and Innovation
- Public Participation in Developing a Common Framework for the Assessment and Management of Sustainable Innovation (CASI)

Methodology:

- o survey of 100 large Polish enterprises (production and services) a pilot study
- survey and stocktaking of 500+ European sustainable innovations

Profile of participants:

- high-level management, R&D staff, product development specialists
- innovators including business, government, research and civil society stakeholders
- Time: years 2020-2021 (+ stocktaking ongoing)

Research questions:

- Are companies with stronger foresight capabilities more responsible innovators?
- What is the relation of the Grand Challenges-related innovation priorities of Polish enterprises with the sustainability oriented Policy Agendas derived from pan-Europan mapping?
- How to support enterprises in building embedded foresight and RRI competences?

RRI in business – promised benefits and proposed actions

Diagnosing RRI and Foresight capabilities

Foresight capabilities:

- 1. Use of foresight tools in the enterprise's operation (PEST, STEEP, TEEPSE critical issues analysis, environmental scanning, horizon scanning, scenarios, Delphi, crossimpact analysis, simulations, modelling, roadmapping)
- 2. Acknowledgement of the need to increase staff competences in the application of future-oriented methods and tools

RRI assessment:

- Company activity helps tackle Grand Societal Challenges (climate change, demand for energy, shrinking natural resources, water deficit, ageing society, privacy, security, etc...)
- 2. Involving stakeholders in the product development
- Reflecting on the possible impact of new products on the environment and society
- 4. Ability to change after receiving feedback from stakeholders, including withdrawing the product from the market or aborting the new product development
- 5. Building scenarios of product life cycle

Four types of companies?

From Innovator's goals to Sustainability-oriented RRI Policy Agendas

Priority Areas by type of Innovation

76RRI priorities by SI type

RRI Agendas

38 SI selected from 194

Product innovations

- 1. Energy
- 2. Waste
- 3. Air quality
- 4. Water
- 5. Public transport
- 6. Carbon footprint
- 7. Construction
- 8. Pollution
- 9. Regional development
- 10. Emissions
- 11. Electric vehicles
- 12. Food production
- 13. Green roofs
- 14. Heating and cooling devices
- 15. Recycling

48 SI selected from 121

Service innovations

- 1. Energy
- 2. Circular economy
- 3. Waste
- 4. Emissions
- 5. Renting and sharing services
- 6. Public transport
- 7. Electric vehicles
- 3. Rural areas
- 9. Knowledge sharing
- 10. Water
- 11. Communication of hazards
- 12. Organic food
- 13. Air/land/water quality
- 14. Cultural heritage
- 15. Traffic
- 16. Air and noise pollution
- 17. Advice to citizens
- 18. Goods distribution to shops

48 SI selected from 75Social innovations

- 1. Organic food
- 2. Lifestyles & consumption patterns
- 3. Community life and development
- 4. Construction waste
- 5. Local quality of life
- 6. Public awareness & participation
- 7. Children's interest and skills
- 8. Conscious use of resources
- 9. Transport
- 10. Water access
- 11. River and stream water quality

22 SI selected from 62Organisational innovations

- 1. Water saving
- 2. Strategies for businesses
- 3. Engaging customers
- 4. Emissions
- 5. Waste management
- 6. Local communities
- 7. Surplus of resources
- 8. Food supply chain9. Smart grid
- 10. E-waste recycling
- 11. Business practices

25 SI selected from 46Governance innovations

- 1. Energy saving policies
- 2. Multi-stakeholder engagement
- 3. Climate change
- 4. Engaging citizens
- 5. Public transport networks
- 6. Emissions
- 7. Air quality
- 8. Renewable energy
- 9. Reliable data

- 1. Energy saving policies
- 2. Renewable energy
- 3. Natural resources
- 4. Food waste
- 5. Quality of life, water and air
- 6. Endangered species
- 7. Food industry
- 8. Integrated applications & systems

5 SI selected from 19 Marketing innovations

- 1. Organic food
- 2. Sustainable shopping practices
- B. Eco-labels/businesses
- 4. Sustainable communities
- 5. Waste stream to landfills

Sustainability-oriented RRI Policy Agenda

Promoting foresight for sustainability governance and intelligence

Deploying responsible environmental and resource-efficiency strategies

Creating
sustainable
biofuel and
renewable
energy solutions

Advancing recycling and circular use of waste and raw materials

Embedding sustainability in cultural and holistic education models

Strengthening eco-community empathy and crowd-funded development

Developing sustainable urban and rural infrastructures for the bioeconomy

Fostering ecolocal-agriculture and bioresources efficiency

Implementing sustainable transport and smart mobility innovations

Dealing with climate issues and managing greenhouse gas emissions

How to support enterprises in building embedded foresight and RRI competences?

- By linking SMEs goals to SDGs
- By supporting SMEs and innovators to systematically engage in:
 - 1. Sustainability assessment and management
 - 2. Critical Issues Analysis
 - 3. Action Roadmapping

Protecting individual freedom and privacy Access to mobility and transportation	
Tackling poverty and social inequalities	Fostering eco-local-agriculture and bio-resources efficiency
Safeguarding civil liberties and civil society values	
Need for clean and affordable energy	Implementing sustainable transport and smart mobility innovations
Ensuring access to education	
Providing security	Strengthening eco-community empathy and crowd-funded develop
Caring for health	Embedding sustainability in cultural and holistic education models
	Promoting foresight for sustainability governance and intelligence
Access to safe water	Creating sustainable biofuel and renewable energy solutions
Climate change mitigation and adaptation	Developing sustainable urban and rural infrastructures for the bioeconomy
Responsible management of resources	Dealing with climate issues and managing greenhouse gas emissi
	Deploying responsible environmental and resource-efficiency strategies
Protecting natural environment	
	Advancing recycling and circular use of waste and raw materials

Conclusions

- Are companies with stronger foresight capabilities more responsible innovators? Not necessarily
- What is the relation of the Grand Challenges-related innovation priorities of Polish enterprises with the sustainability oriented Policy Agendas derived from pan-Europan mapping? Multidirectional, oriented mostly at environmental challenges (much less on socio-economic ones)
- How to support enterprises in building embedded foresight and RRI competences?

Areas of future study

- Extend the study to a larger population of enterprises. Perform cross-sectoral and cross-country studies.
- Design novel empirical studies that could bridge the theory and practice of responsible research and innovation?
- Study the understanding and perception of responsibility in innovating enterprises?
- Confront the (Europocentric?) RRI paradigm with approaches in other world regions.
- Test the relevance of tools like key responsibility indicators (responsibility KPIs), innovation responsibility scorecard, RRI index

References

Dian, N (2009) Foresight Styles Assessment: A Theory Based Study in Competency and Change, Journal of Futures Studies, vol. 13, no. 3, pp. 59-74.

Kononiuk, A. Sacio-Szymańska, A. and Gáspár, A. (2017) *How do companies envisage the future? Functional foresight approaches*, Engineering Management in Production and Services 9(4): 21-33, https://doi.org/10.1515/emj-2017-0028

Nazarko, L. (2019) Responsible Research and Innovation in Industry: from Ethical Acceptability to Social Desirability, [in:] P. Golińska, M. Spychala (Eds.), Corporate Social Responsibility in the Manufacturing and Services Sectors. EcoProduction (Environmental Issues in Logistics and Manufacturing), Springer, Berlin, Heidelberg, https://doi.org/10.1007/978-3-642-33851-9_7

Popper, M., Tregner-Mlinaric, A., Popper, R., Velasco, G., Schwarz-Woelzl, M., Van Eynde, S., Ramioul, M., Damianova, Z., Kozarev, V., Martini, M., Hölsgens, R. and Schultze, J. (2017) *Sustainable innovation policy advice using a quadruple helix approach to 'innovations' mapping*, in Popper, R. and Velasco, G. (eds.), Sustainable Innovation Policy Advice, CASI project report. Deliverable 7.2. ISBN: 978-954-9456-21-9

Popper, R., Popper, M., Velasco, G. (2017) *Towards a more responsible sustainable innovation assessment and management culture in Europe*, Engineering Management in Production and Services, vol. 9, no. 4, pp.7-20. https://doi.org/10.1515/emj-2017-0027

Popper, R., Popper, M., Velasco, G. (2020). Sustainable Innovation Assessment and Management Framework: Principles, Methodology and Practice. In: Martini, M., Hölsgens, R., Popper, R. (eds) Governance and Management of Sustainable Innovation. Sustainability and Innovation. Springer, Cham. https://doi.org/10.1007/978-3-030-46750-0 1

Robinson, D.K.R. (2009) *Co-evolutionary scenarios: An application to prospecting futures of the responsible development of nanotechnology*, Technological Forecasting and Social Change, Volume 76, Issue 9, https://doi.org/10.1016/j.techfore.2009.07.015

van de Poel, I., Asveld, L., Flipse, S., Klaassen, P., Kwee, Z., Maia, M., Mantovani, E., Nathan, C., Porcari, A., Yaghmaei E. (2020) *Learning to do responsible innovation in industry: six lessons*, Journal of Responsible Innovation, 7:3, 697-707, https://doi.org/10.1080/23299460.2020.1791506

van der Laan, L., Erwee, R. (2012) Foresight styles assessment: a valid and reliable measure of dimensions of foresight competence?, Foresight, Vol. 14 Issue: 5, pp.374-386, https://doi.org/10.1108/14636681211269860

Thank you!

L.Nazarko@pb.edu.pl

rafael.popper@manchester.ac.uk

